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Abstract. Calculating correspondences between non-rigidly deformed
shapes is the backbone of many applications in 3D computer vision and
graphics. The functional map approach offers an efficient solution to this
problem and has been very popular in learning frameworks due to its
low-dimensional and continuous nature. However, most methods rely on
the eigenfunctions of the Laplace-Beltrami operator as a basis for the
underlying function spaces. While these have many advantages, they
are also sensitive to non-isometric deformations and noise. Recently a
method to learn the basis functions along with suitable descriptors has
been proposed by Marin et al.. We do an in-depth analysis of the archi-
tecture proposed, including a new training scheme to increase robustness
against sampling inconsistencies and an extension to unsupervised train-
ing which still obtains results on-par with the supervised approach.

Keywords: Non-Rigid Correspondence · Unsupervised Learning · Func-
tional Maps · 3D Descriptors · Basis Learning.

1 Introduction

The problem of shape correspondence between 3D shapes acts as the foundation
in many applications, for example texture and motion transfer, statistical shape
modelling or 3D medical applications. The goal is to find a meaningful map
between the surfaces of shapes which can vary in shape or pose but with a
semantic relation. In contrast to the 3-dimensional rigid case, where only six
parameters are necessary to describe the deformation (rotation and translation),
the non-rigid scenario involves degrees of freedom for every vertex on the source
shape, thus, the search space becomes computationally infeasible to deal with.

To overcome this issue, the concept of functional maps was introduced in
[21]. Instead of computing a correspondence between vertices, functional maps
compute a correspondence between function spaces on the surface of the shapes.
Using the Laplace-Beltrami eigenbasis to define these function spaces reduces
the correspondence problem to a low-dimensional, continuous optimisation. Due
to this, functional maps have been widely popular [19,8,22], especially in learn-
ing applications [14,11,27] (see also Section 2.2). However, the Laplace-Beltrami
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eigenfunctions are sensitive to non-isometric deformations and noise associated
with the surface. The most common solution is to learn the descriptor functions
which are robust against the target deformations [14,11,27] while keeping the ba-
sis unchanged. To make the basis functions robust, the approach of [17] proposed
to learn both the basis functions as well as the descriptors used to calculate the
functional maps in a data-driven way. However, the method is supervised and
relies on a large training dataset with labelled point-to-point correspondences.
There is a deficit of such datasets because their generation is very expensive or re-
lies on artificial data which is often too regular to learn robustness against noise.
In this paper, we analyse the framework of [17], show points of improvement
and propose strategies to overcome the problems of labelled data and sampling
irregularity.

Contributions. We provide an analysis of several aspects of the framework in [17]
to overcome performance bottlenecks. This includes hyper parameters and base
network choice, as well as two extensions to make the training unsupervised and
robust against sampling inconsistencies. In order to make the shape matching
pipeline [17] sampling invariant and more general, we perform a random sampling
scheme during training which provides a trade-off between high computational
demand and dependence on the sampling of the input shapes. Additionally, we
propose an unsupervised version for the same setup which tackles the shape
correspondence task by leveraging prior geometric information associated with
the compared shapes as regularisers in order to overcome the need for labelled
data which is expensive to produce for the correspondence problem.

2 Related Work

We provide an introduction to learning and non-learning-based non-rigid shape
correspondence approaches that are directly related to our method. For a in-
depth survey of the topic the interested reader may refer to [28] and [20].

2.1 Non-Rigid Correspondence Methods

The problem of finding correspondences between two non-rigidly deformed shapes
is often posed as an quadratic assignment problem (QAP) where the solution is
a permutation that matches vertices in a way such that the geodesic distances
between all pairs of points are as similar as possible [13]. However, this formula-
tion is NP-hard [4] and assumes that the optimal solution can be described by a
permutation which is often not the case in reality. Many non-optimal algorithms
to solve the QAP problem have been proposed, for example convex relaxations
[13], and heuristics for non-convex formulations [12]. To work around the permu-
tation constraint, soft-correspondences are a popular choice [26,5], or the usage
of elastic matching formulations [34,10]. Nevertheless, many of these approaches
struggle with high resolution meshes. A possible work-around is to add regular-
ization in the extrinsic embedding space, for example by restricting the motion
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between the input shapes to be volume-preserving [7]. One very widely-used
solution is to move from the space of vertex correspondences to functional corre-
spondences. In [21], Ovsjanikov et al. proposed the so-called functional maps that
represent correspondences as a transformation matrix between two fixed function
basis spaces. Using the frequency ordering of the Laplace-Beltrami eigenspace,
this means the correspondence can be approximated by a small matrix with no
constraints on the entries. This is also the representation we choose in this paper.

2.2 Functional Map-Based Learning Approaches

Since functional maps provide a continuous and memory-efficient way to repre-
sent correspondence, they have been a popular choice in learning-based corre-
spondence approaches. The first attempt to incorporate functional maps into a
learning framework was done in DeepFMs [14] by learning the optimal combina-
tion of descriptors before optimizing the functional map matrix. This lead to a
variety of follow-up work in which this strategy is refined [29], the functional map
matrix itself is predicted [15], the framework is made unsupervised [11,2], and
the properties of the functional map matrix [27] or of the deformation between
the shapes are imposed [9].

However, most of these methods like original work [21], still rely on the usage
of the eigenfunctions of the Laplace-Beltrami operator as basis functions. While
this selection has many advantages in the setting of non-rigid shape matching,
it is also sensitive to non-isometric deformations and noise which deters the
performance in these settings. Alternative basis sets have been proposed in the
literature, for example in [18,6,23], but most of them work best for fixed settings.
Instead of using a predetermined basis set, the approach of [17] suggests to learn
the optimal function basis in combination with the descriptor functions from
a training set. This works very well, even in the presence of noise, but the
approach requires large amounts of labelled data for a supervised training. In
this work, we propose a novel way to train this kind of framework in a completely
unsupervised way, inspired by the unsupervised descriptor-learning methods of
[11,2], thus eliminating the need for accumulation and labelling of huge volumes
of data.

3 Background

3.1 Functional Maps

Functional maps frame the correspondence problem in terms of function spaces
instead of points on the surface. Let F(X ), F(Y) be two comparable function
spaces on the shapes X ,Y discretised with n vertices with basis sets {ϕj}j≥1 ⊂
F(X ) and {ψi}i≥1 ⊂ F(Y) respectively. Then, a functional map is a linear
mapping CXY : F(X ) → F(Y) between the function spaces. In the case of
finite basis sets with cardinality k, the linear mapping can be written simply
as a matrix and computed either by construction through a given point-to-
point correspondence P or optimised to preserve certain descriptor functions.
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For a given P ∈ {0, 1}n×n representing the correspondence between the vertices
of input shapes (X ,Y) and the basis functions stacked into Φ ∈ Rn×k and
Ψ ∈ Rn×k.
The functional map matrix C can be computed using

C = Ψ † · P · Φ. (1)

where † refers to the Pseudo-inverse which is either the transpose or mass-
corrected transpose depending on how the eigenfunctions were computed.

In the case where no point-wise correspondence is given, the functional map
can be approximated from a set of comparable vertex descriptor functions.
Consider a set of q corresponding functions GX = (f1, . . . , fq) ∈ Rn×q and
GY = (g1, . . . , gq) ∈ Rn×q (such that GX ≈ TFGY , where TF can be thought
of as some sort of functional correspondence), C is computed by solving this
least-square problem with k2 variables

min
C∈Rk×k

∥∥G⊤
XΦ−G⊤

YΨC
∥∥2
F

(2)

which has a closed form solution given by :

C = (G⊤
YΨ)

−1(G⊤
XΦ) (3)

∥.∥F denotes the calculation of the Frobenius norm. The most common choice
for Φ, Ψ are the first k-eigenfunctions of the Laplace-Beltrami operator, as it was
proposed in [21], which provide a basis for square integrable functions L2 on the
surface.

3.2 Linearly-Invariant Embedding

Our method is based on the general network architecture proposed in Marin
et al. [17] which proposes to learn both the function basis and the optimal
descriptors, associated with the learned basis set, in a joint training regime. The
framework uses two PointNet [24] networks, one for the basis functions called
linearly invariant embedding network, and other for the descriptors, called probe
function network, which are trained sequentially. An overview of the pipeline is
shown in Figure 1.

Linearly Invariant Embedding. The first step is to train a Siamese network which
outputs the embedding functions for each input shape X , Y. Given a fixed func-
tion set ΦX , ΦY and a ground-truth correspondence Πgt

XY , The generation of
ΦX , ΦY is learned through the loss function

L(ΦX , ΦY) =
1

nβ

∑
∥SXYPX −Πgt

XYPX ∥22 (4)

where nβ represents the total correspondence cases and SXY denotes a soft per-
mutation matrix which provides an approximate point to point mapping between
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Fig. 1. Overview of the framework. The invariant embedding network generates a basis
set Φ· which is then used to generate descriptor functions G· for this basis. Both are
used to compute a functional map CXY and soft correspondence P for either the loss
function or solution. Networks in the same colour share weights.

the defined shapes in a matrix format given by :

(SXY)ij =
e−∥Φ̂

i
X−Φj

Y∥2∑nY
k=1 e

−∥Φ̂i
X−Φk

Y∥2

(5)

Eq. 4 aims to preserve the coordinate function PX of X through the soft
correspondence induced by ΦX , ΦY .

Probe Functions. After completely training the embedding network, the next
step is to generate the probe functions based on which the functional map be-
tween ΦX and ΦY can be predicted with the ground-truth knowledge. The probe
functions are also generated by a Siamese network which is trained using the
ground-truth functional maps Cgt

YX = Φ†
XΠ

gt
YXΦY and CYX = (Φ†

XGX )(Φ†
YGY)

−1.
The loss function simply compares Cgt

YX and CYX :

L(GX , GY) = ∥Cgt
YX − CYX ∥2 (6)

4 Method

In this section we describe two major changes we made to the training procedure
in order to make it robust to sampling (Section 4.2) and shift to unsupervised do-
main (Section 4.1). Additional experiments on single aspects of the architecture
are described in Section 5.

For two shapes X ,Y, we denote the basis which is the output of the embed-
ding network as ΦX , ΦY ∈ Rn×k, where n and k are the number of vertices and
the number of basis functions, respectively. The descriptor functions generated
by the probe network are GX , GY ∈ Rn×m where m is the descriptor dimension
which is a hyperparameter. Finally, CXY indicates the functional map from the



6 S. Siddiqi and Z. Lähner

function space on X to Y. The function space is spanned by ΦX , ΦY unless indi-
cated otherwise. Notice that with given ΦX , ΦY and GX , GY , a functional map
can always be computed using Eq. (3).

4.1 Unsupervised Training

We adapt the training strategy of [17] to work without the need for labelled
ground-truth correspondences. As described in Section 3.2 and Figure 1, the
pipeline has two networks that are trained sequentially and both use the ground-
truth as part of the loss function. In Eq. (4) the true correspondence is directly
included as Πgt

XY and in Eq. (6) it is used to generate Cgt
YX using the computed

embedding functions. Both networks have to be made unsupervised separately.

Invariant Embedding Network. To make the embedding network unsuper-
vised, we need to remove the need for the ground-truth permutation from the
calculation of the functional map CYX in Eq. (4). To achieve this, we utilise
handcrafted descriptors for the computation of CYX as is done in the original
functional maps framework and explained in Eq. (3). This is only done dur-
ing training when the learned probe functions are not available yet. To make
up for the robustness of the ground-truth, we can impose different meaningful
properties of the optimal solution, like orthonormality, to guide the optimisation
[27].

In the end, our solution involves aligning pairwise features instead of com-
paring to the ground-truth and imposing orthonormality both on the resulting
functional map as well on the basis functions. Then, the loss function has the
following structure:

Lembed(X ,Y) = ℓdist(X ,Y) + αℓorth-func(X ,Y) + βℓorth-basis(X ,Y) (7)

where α and β weight the significance of the orthonormality conditions w.r.t the
overall optimisation landscape. We obtained good results with α = β = 0.1. The
terms are defined below.

Distortion Minimisation Term ℓdist(X ,Y). Instead of comparing whether the
soft-correspondence induced by ΦX , ΦY imposes the same transformation on PX
as the ground-truth, we will compare whether the soft-correspondence aligns
pair-wise properties of X and Y. Given two matrices DX ,DY ∈ Rn×n that
define comparable pair-wise properties on X ,Y, the loss reads as

ℓdist(X ,Y) =
1

|Y|2
∥∥DY −Q⊤DXQ

∥∥2
F

(8)

where Q = P ◦P is the Hadamard product of P =
∣∣∣ΦYCXYΦX

⊤AX

∣∣∣∧ which is

the column normalised (|·|∧) reversal of Eq. (1) to get a soft correspondence from
a given functional map. AX is the mass matrix of X . The Hadamard product
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means that the loss function is derived from the expected deviation from the
optimal solution when the columns of Q are interpreted as probabilities of the
correspondence of one point. In this step, the GX , GY in the computation of
CXY are manually chosen. We show experiments on this choice in Section 5.5.
As has been proposed previously in the literature, we try the geodesic distances
[11] and heat kernel [2] for D·. The results can be found in Section 5.5. This
term ensures that the geometric structure of the shapes is preserved through the
functional map imposed by the embedding functions, which is a property of any
good solution.

Orthonormality of the Basis Functions ℓorth-basis(X ,Y). Orthonormality of the
basis functions is desirable as it allows for the efficient calculation and regulari-
sation of the functional map. We impose orthonormality by penalising deviation
from the identity in the following form:

ℓorth-basis(X ,Y) =
∥∥∥ΦX

⊤AXΦX − I
∥∥∥2
F
+

∥∥∥ΦY
⊤AYΦY − I

∥∥∥2
F

(9)

where I is the identity matrix and A· again is the mass matrix of the respective
shape which is used to weight the inner product on the surface.

Orthonormality of the Functional Map ℓorth-func(X ,Y). Orthonormality of the
functional map matrix C is associated to area preservation [21] and has been
shown to work well as a regularisation term when learning of functional maps
[27]. If CXY is the functional map obtained through Eq. (3), the orthonormality
can be enforced as follows:

ℓorth-func(X ,Y) =
∥∥∥CXY

⊤CXY − I
∥∥∥2
F

(10)

where I represents the identity matrix

Probe Function Network. Once the embedding network has been trained,
the next step is to train the probe network to generate optimal descriptors that
work with new embedding functions. Again, we only need to replace the loss
function with an unsupervised counterpart. We adjust the loss function from the
embedding network (Eq. (7)) to make it suitable for the new task by dropping
the orthonormality of the basis functions which is not needed in this case. The
final loss function is then defined as

Lprobe(X ,Y) = ℓdist(X ,Y) + αℓorth-func(X ,Y) (11)

where ℓdist(X ,Y) and ℓorth-func(X ,Y) can be obtained from Eqs. (8) and (10)
respectively. Here, instead of fixing GX , GY , we fix ΦX , ΦY within the loss func-
tions. We use α = 0.1.
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4.2 Subsampling Scheme

In the proposed approach of [17] all shapes are subsampled to a fixed amount of
vertices to make the training feasible. The sampled vertices are the same for all
shapes to preserve the ground-truth information from the full shape to make the
supervised training possible. However, this leads to incentives for the network to
rely on the fixed vertex sampling instead of learning robustness against different
vertex distributions which will be present in realistic datasets.

We propose to use a flexible training scheme that simulates varying and non-
uniform vertex sampling on the surface. To that end, our training uses a different
subset of vertices of a full shape in each training epoch. To achieve a full coverage
of the surface we choose a subset F ⊂ X with farthest point sampling that stays
the same in all epochs – similar to how the training set is chosen in [17]. Further,
we add a certain percentage of randomly chosen vertices to the training set.
This set changes in each epoch and forces the network to generalise to a wide
variety of vertex positions. Unfortunately, this cannot be simply combined with
the unsupervised scheme from Section 4.1 because it requires either storing a
huge geodesic distance matrix with n2 entries, or computing geodesics on-the-fly
which is very slow. However, we show that this strategy vastly improves the
performance of the original pipeline when evaluating on full resolution shapes.

5 Experiments

In the following section we describe the experiments done for this paper. Sec-
tion 5.3 gives a comparison of the supervised approach of [17] with our unsu-
pervised training scheme. In Section 5.4 we describe how the random sampling
training improves the results of the supervised approach. And finally, in Sec-
tion 5.5 we do an ablation study of several aspects of the original architecture.
The mean geodesic error results and hyper parameters of all experiments can be
found in the supplementary material.

5.1 Datasets

We use two datasets: the SURREAL [32] dataset consisting of 1000 human
shapes with varying pose and body shape. We use this dataset as the train-
ing and validation set during the training phase in a ratio of 49:1. For testing we
use the registration of the FAUST [3] dataset which contains 100 human shapes
of 10 individuals in 10 poses each. We call the setting with two shapes from the
same individual isometric and from two different individuals non-isometric. In
order to keep the problem size tractable, all shapes are downsampled to 1000
and 2100 vertices (as indicated in the experiment description).

Both datasets originally use the SMPL [16] mesh connectivity and, thus,
have a compatible sampling which makes the task easier. However, we introduce
different downsampling strategies in the experiments in Section 5.4 to generate
inconsistent samplings with increased complexity.



A Network Analysis for Learning via Linearly-Embedded Functions 9

For pre-processing, we zero-mean the coordinate functions of all shapes and
add random rotations in the range of (−π/2, π/2) around the y-axis for aug-
menting the training data.

5.2 Evaluation

We evaluate using the mean geodesic error and cumulative geodesic error plots.
For a pair of shapes (A,B), let a ∈ A be the source point, b ∈ B the calculated
match for a, and b∗ ∈ B the ground-truth match of a. We measure the relative
geodesic error of the correspondence (a, b) as:

ϵ(a, b) =
distgeo(b, b∗)

diam(B)
(12)

where distgeo(b, b∗) represents the geodesic distance between points b and b∗ on
surface B and diam(B) is the geodesic diameter associated with B. The mean
geodesic error is the average of ϵ(a, b) for all calculated matches (a, b).

The cumulative geodesic error curve plots the percentage of correspondences
that are below the threshold given on the x-axis in percentage of the geodesic
diameter of B. The performance comparison is done on pairs of isometric and
non-isometric shapes.

Qualitative Results. We visualise the results by colour transfer. For a correspon-
dence between shapes X and Y, we plot a fixed, smooth colour function based on
the 3D coordinates of X and then use the computed correspondence to transfer
the colourmap to shape Y. Wrong correspondences are visible through wrong
colours and non-smooth areas. See Figure 2.

5.3 Correspondence Accuracy

We evaluate the performance of our unsupervised setup against the original
implementation of [17] on both isometric (from the same class in FAUST) and
non-isometric (from different classes) pairs. We report the results and some qual-
itative examples in Figure 2. Even though we do not use any ground-truth in-
formation, we were able to achieve results on-par with the supervised approach.
Interestingly, there is nearly no difference in results between the isometric and
non-isometric cases, especially for the unsupervised training, which is an in-
dicator that the usage of learned basis functions instead of isometry-invariant
Laplace-Beltrami eigenfunctions is indeed more robust against deviations from
the isometry assumption.

5.4 Different Sampling

The SURREAL and FAUST template datasets have the same mesh topology due
to the usage of the same SMPL model. This is not a realistic assumption in many
settings since a registration to a joint mesh already assumes a correspondence
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Fig. 2. (Left) Comparison of results on the FAUST test dataset. (Right) Qualitative
examples of the results on the FAUST dataset with 1000 vertices. The results are overall
accurate except some small noise, see for example the right hand in (ii).

was computed through the registration process. Instead real-world scans have
varying connectivity and different sampling density on different mesh parts due
to the acquisition process. We simulate this effect by downsampling our shapes
with farthest point sampling (FPS) plus a certain percentage of random points
instead of a fixed, consistent subset for all shapes as explained in Section 4.2.
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Fig. 3. (i) Examples of the same shape with different sampling. (Left) 1000 of 6980
vertices sampled via FPS. (Right) 600 vertices sampled with FPS and 400 randomly. (ii)
Effect of different sampling methods on the results. Using FPS and adding randomly
sampled points prevents the network from overfitting on the point distribution and
makes the results more robust.

We report the results and an example of the sampling in Fig. 3. Our results
show that introducing randomness in the sampling process during training signif-
icantly improves the results due to the network being less dependent on the fixed
point distribution. However, there needs to be a trade-off between computational
load due to addition of more points and improvement in performance.
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5.5 Ablation Study

We tested the influence of the different design choices made and justify our
decisions with the following ablation study. The mean geodesic errors of all
experiments are reported in the supplementary material.
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Fig. 4. Cumulative error curves of different settings and architectures. (Left) We test
the influence of the different descriptor selection in training of the basis network. The
performance difference is minimal. (Middle) Using PointNet++ [25] instead of PointNet
[24] as the base architecture significantly improves the performance. (Right) Compar-
ison of the supervised approach in [17], our unsupervised approach with geodesics,
and our unsupervised approach with heat kernels. For heat kernel we try a fixed time
(t = 0.01, dotted), one time reduction (t = 0.01 → 0.007, dashed), and two time re-
ductions (t = 0.01 → 0.007 → 0.005, solid).

Network Type. The embedding and probe networks from [17] are realised through
a PointNet architecture [24]. However, PointNet is known to be well-suited for
global feature learning but less to learn distinctive local features due to the global
max-pooling. PointNet++ [25] is an extension of PointNet which overcomes these
shortcomings and should be able to learn point-wise descriptors better. The
replacement of PointNet with PointNet++ results in performance improvement
shown in Figure 4.

Interestingly, the usage of PointNet++ also solves the problem of front-back
symmetry flips in the solution. The human shape has very few features that can
distinguish the front from the back side (e.g. the face and feet facing forward)
and none of them are present on global scale. Due to focus being only on the
global scale features in the case of a simple PointNet, the solution often mixes
up front and back sides of the shape-pairs but with the usage of PointNet++
this problem is solved. See Figure 5 for an example.

Learning of Probe Functions. In the unsupervised scenario, the absence of the
ground-truth prompts the utilisation of handcrafted descriptors in Eq. 3 to sim-
plify the functional map generation as explained in Section 4.1. We propose
the use of well-tried HKS [30], WKS [1], and SHOT [31] as GX , GY for training
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the basis network. The HKS and WKS are purely intrinsic while SHOT includes
extrinsic information. A combination of intrinsic and extrinsic descriptors often
leads to the best results and, eventually, we decided to choose WKS and SHOT
based on the results in Fig. 4.

(i) (ii)

Fig. 5. (i) Front-back symmetry swap when using PointNet due to its global properties.
(ii) Correct solution on the same pair when using PointNet++ instead.

Pair-Wise Descriptors. Two pair-wise descriptors are popular choices in the
context of non-rigid shape correspondence, namely, the geodesic distances and
heat kernel which have for example been used in [11] and [2]. While the geodesics
are more expensive to compute, the heat kernel has a time parameter t that has
to be chosen. The lower t the more local the heat kernel which leads to more
accurate correspondences but a less convex energy landscape [33]. Therefore,
reducing the time parameter after a certain amount of epochs can improve the
results by applying a sort of coarse-to-fine scheme [2]. We show the results of
all choices including the supervised method of [17] in Figure 4. While the time
reduction helps the heat kernel approach, the geodesic distances still perform
better.

Network Dimensions. Both the output dimensions of the embedding and the
probe network are variables to be chosen. A larger basis and descriptor size
allows for more information about the shapes to be processed but at the same
time increases the network size and, thus, the complexity of training. The effect
on the result is minimal as compared to the associated computational load. Our
choice is dout = 20 for the embedding network and dout = 40 for the probe
network due to better trade-off between the complexity and performance.

6 Conclusion

In this paper, we analysed several aspects of the linear embedding framework
of [17] for functional maps in the context of non-rigid shape correspondence.
In addition to network hyper parameters, we proposed an extension to make
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40-d probe 20-d embedd final
20-d E 30-d E 40-d P 50-d P 60-d P 30-d E, 50-d P

after basis train. 0.0204 0.0157 0.0204 0.0204 0.0204 0.0157
after probe train. (full) 0.1099 0.1126 0.1099 0.1119 0.1152 0.1051

Table 1. Effects of the network output sizes on the embedding and probe networks.
We test the effect after the training of the embedding and probe network separately.
E stands for embedding and P for probe.

the whole pipeline unsupervised and show that the same performance can be
achieved without the use of labelled training data. Additionally, we devised a
training strategy based on random sampling during training that improves the
robustness of the fixed sampling training in [17] against sampling related arte-
facts. Overall, we achieved several improvements over the original pipeline which
can be used to boost the performance in many applications.
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